Παρασκευή 7 Ιουνίου 2013

Equivalent Circuit for Ideal Operational Amplifier.....



IDEALIZED CHARACTERISTIC
Open Loop Gain, (Avo) Infinite - The main function of an operational amplifier is to amplify the input signal and the more open loop gain it has the better. Open-loop gain is the gain of the op-amp without positive or negative feedback and for an ideal amplifier the gain will be infinite but typical real values range from about 20,000 to 200,000.

Input impedance, (Zin) Infinite - Input impedance is the ratio of input voltage to input current and is assumed to be infinite to prevent any current flowing from the source supply into the amplifiers input circuitry (Iin =0). Real op-amps have input leakage currents from a few pico-amps to a few milli-amps.

Output impedance, (Zout) Zero - The output impedance of the ideal operational amplifier is assumed to be zero acting as a perfect internal voltage source with no internal resistance so that it can supply as much current as necessary to the load. This internal resistance is effectively in series with the load thereby reducing the output voltage available to the load. Real op-amps have output-impedance in the 100-20Ω range.

Bandwidth, (BW) Infinite - An ideal operational amplifier has an infinite frequency response and can amplify any frequency signal from DC to the highest AC frequencies so it is therefore assumed to have an infinite bandwidth. With real op-amps, the bandwidth is limited by the Gain-Bandwidth product (GB), which is equal to the frequency where the amplifiers gain becomes unity.

Offset Voltage, (Vio) Zero - The amplifiers output will be zero when the voltage difference between the inverting and the non-inverting inputs is zero, the same or when both inputs are grounded. Real op-amps have some amount of output offset voltage. 

Add To Facebook Add To Twitter Add To Yahoo Add To Reddit Fav This With Technorati Add To Del.icio.us Digg This Stumble This

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου